In Vitro Effects of Beta-2 Agonists on Skeletal Muscle Differentiation, Hypertrophy, and Atrophy
نویسندگان
چکیده
BACKGROUND : Beta-2 agonists are widely used in the treatment of asthma and chronic obstructive pulmonary disease for their effect on airway smooth muscle relaxation. They also act on skeletal muscle, although their reported ergogenic effect is controversial. AIM : To evaluate the in vitro effects of short-acting and long-acting beta-2 agonists on adrenergic receptor (ADR) expression, hypertrophy, and atrophy markers, in a skeletal muscle cell line. METHODS : The C2C12 cell line was used as a model of skeletal muscle differentiation. ADR messenger RNA expression was evaluated in proliferating myoblasts, committed cells, and differentiated myotubes, in basal conditions and after treatment with 10 M clenbuterol, salbutamol, salmeterol, and formoterol. Effect of beta-2 agonists on gene and protein expression of hypertrophy and atrophy markers was assessed in differentiated myotubes. RESULTS : Our study shows that beta-2 ADR messenger RNA was expressed and progressively increased during cell differentiation. Beta-2 agonist treatment did not affect its expression. Skeletal muscle hypertrophy markers (fast and slow myosin, myogenin) were not modulated by any of the beta-2 agonists evaluated. However, clenbuterol induced a significant, dose-dependent downregulation of skeletal muscle atrophy genes (atrogin-1, MuRF-1, and cathepsin L). CONCLUSIONS : The reported ergogenic effect of beta-2 agonists, if any, should be considered as drug-specific and not class-specific and that of clenbuterol is mediated by the inhibition of the atrophic pathway.
منابع مشابه
تأثیر سه ماه تمرین هوازی بر مسیر پیام رسانی Wnt عضله اسکلتی موشهای صحرایی نر
Background: Atrophy in skeletal muscle plays an important role in disease-related tissue dysfunction such as sarcopenia. The Wnt-signaling pathway has been shown to be critical for skeletal muscle development. Current evidence suggests that exercise trainings may alter hypertrophy-related signaling in skeletal muscle. Therefore, the purpose of this study was investigating the effect of three mo...
متن کاملUrsolic Acid Improve Skeletal Muscle Hypertrophy by Increasing of PAX7, Myod and Myogenin Expression and Satellite Cells Proliferation in Native Broiler Chickens
Ursolic acid (UA) is known as a naturally occurring triterpene pentacyclic compound in some medicinal herbs including savory that affects the skeletal muscle. In the current study, the effect of UA was evaluated on C2C12 cells and satellite cells (SCs) isolated from native broiler chicks. First in the in vitro experiment, the C2C12 cell line obtained from the Stem Cell Technology Research Cente...
متن کاملMyostatin reduces Akt/TORC1/p70S6K signaling, inhibiting myoblast differentiation and myotube size.
Myostatin is a negative regulator of skeletal muscle size, previously shown to inhibit muscle cell differentiation. Myostatin requires both Smad2 and Smad3 downstream of the activin receptor II (ActRII)/activin receptor-like kinase (ALK) receptor complex. Other transforming growth factor-beta (TGF-beta)-like molecules can also block differentiation, including TGF-beta(1), growth differentiation...
متن کاملHistological evidences of reparative and regenerative effects of beta-adrenoceptor agonists, clenbuterol and isoproterenol, in denervated rat skeletal muscle.
The aim of this study was to determine the contribution of beta-adrenoceptor activation in the reconstruction of the structural and functional organization of denervated skeletal muscle. beta-agonists, clenbuterol (1.2 mg/kg body weight) and isoproterenol (2 mg/kg body weight), administration (daily oral administration; maximum 7 days) to normal innervated rats as well as denervated animals cau...
متن کاملBeta2-integrins contribute to skeletal muscle hypertrophy in mice.
We tested the contribution of beta(2)-integrins, which are important for normal function of neutrophils and macrophages, to skeletal muscle hypertrophy after mechanical loading. Using the synergist ablation model of hypertrophy and mice deficient in the common beta-subunit of beta(2)-integrins (CD18(-/-)), we found that overloaded muscles of wild-type mice had greater myofiber size, dry muscle ...
متن کامل